首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   156篇
  国内免费   38篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   24篇
  2016年   35篇
  2015年   26篇
  2014年   32篇
  2013年   31篇
  2012年   31篇
  2011年   38篇
  2010年   21篇
  2009年   31篇
  2008年   19篇
  2007年   28篇
  2006年   32篇
  2005年   19篇
  2004年   15篇
  2003年   11篇
  2002年   11篇
  2001年   19篇
  2000年   9篇
  1999年   7篇
  1998年   4篇
  1997年   9篇
  1996年   8篇
  1995年   10篇
  1994年   12篇
  1993年   10篇
  1992年   7篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
11.
The present article discusses the properties of the mean residual life function in a renewal process. We examine the relationship this function has with the failure rate function and the conventional mean, variance and coefficient of variation of residual life. We also discuss some monotonicity properties of the mean residual life function. A partial order based on the renewal mean residual function is introduced along with its interrelationship with some existing stochastic orders. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
12.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
13.
系泊状态下,用Butterworth低通滤波器解决舰载RLG PINS初始对准中杆臂效应问题时,对准的精度受安装误差、杆臂长度和舰船摇摆等因素的影响。通过仿真分析,认为Butterworth低通滤波器适于解决风浪干扰下的舰载平台系统初始对准中的杆臂效应问题,且安装误差、安装位置是影响对准精度的主要因素,提高系统标定精度,并尽量使系统安装在船体对称面内,可以提高对准精度。  相似文献   
14.
通过对惯性制导系统两个基本方程的研究,求出了各状态矢量在各坐标系下的微分方程,然后以ψ角法所确立的平台为基准,分别推导得出惯性制导系统各主要状态的微分方程,从而建立了捷联惯性制导系统的误差模型.最后根据静基座捷联惯导系统初始对准的特点对其进行简化,得到了静基座捷联惯导系统快速自对准的误差模型.  相似文献   
15.
Mean residual life is a useful dynamic characteristic to study reliability of a system. It has been widely considered in the literature not only for single unit systems but also for coherent systems. This article is concerned with the study of mean residual life for a coherent system that consists of multiple types of dependent components. In particular, the survival signature based generalized mixture representation is obtained for the survival function of a coherent system and it is used to evaluate the mean residual life function. Furthermore, two mean residual life functions under different conditional events on components’ lifetimes are also defined and studied.  相似文献   
16.
对目标打击概率的数学模型及分析   总被引:1,自引:0,他引:1  
通过分析识别跟踪攻击目标的过程,建立了攻击目标打击概率的数学模型和基本算法,通过计算机采用蒙特卡罗法模拟计算了不同条件下对目标的打击概率,以此研究影响打击概率的因素.计算结果表明,武器系统的作战半径和威力半径两个因素对打击概率影响较大,误差因素在一定范围内影响较小,各参数之间存在优化匹配的空间.  相似文献   
17.
We consider a partially observable degrading system subject to condition monitoring and random failure. The system's condition is categorized into one of three states: a healthy state, a warning state, and a failure state. Only the failure state is observable. While the system is operational, vector data that is stochastically related to the system state is obtained through condition monitoring at regular sampling epochs. The state process evolution follows a hidden semi‐Markov model (HSMM) and Erlang distribution is used for modeling the system's sojourn time in each of its operational states. The Expectation‐maximization (EM) algorithm is applied to estimate the state and observation parameters of the HSMM. Explicit formulas for several important quantities for the system residual life estimation such as the conditional reliability function and the mean residual life are derived in terms of the posterior probability that the system is in the warning state. Numerical examples are presented to demonstrate the applicability of the estimation procedure and failure prediction method. A comparison results with hidden Markov modeling are provided to illustrate the effectiveness of the proposed model. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 190–205, 2015  相似文献   
18.
非合作通信背景下,针对传统干扰近似法(IAM)进行正交频分复用(OFDM)/偏移正交振幅调制(OQAM)系统信道估计需要导频符号值作为先验信息的问题,提出一种基于OQAM符号特征的IAM(OCBIAM)估计算法。该算法利用IAM导频结构和OQAM实符号的有限集特征,将信道衰落系数幅度和相位分开估计,在仅获得导频位置而未知导频符号值的条件下实现了OFDM/OQAM系统半盲信道估计。并且证明了OCB-IAM算法由于利用接收符号的二阶统计量将高斯白噪声变为非随机的单音干扰,从而在中低信噪比条件下具有优于IAM算法的估计性能。仿真实验验证了理论推导的正确性和OCB-IAM算法的可靠性。  相似文献   
19.
针对火炮身管上标记两个点检测调炮精度受制于单个空间点坐标测量精度的问题,提出通过增加身管上标记点的冗余数量来提高调炮精度的检测方法。应用最小二乘原理对多个空间点进行直线拟合,并采用Monte Carlo方法对身管指向的测量精度进行分析。结果表明:标记4个点、5个点、6个点和7个点与标记2个点(传统方法)相比,其身管指向的测量精度分别提高了约6%、18%、19%和21%。该方法适用于对调炮精度检测要求较高的场合,综合考虑工作效率和测量精度这两个因素,推荐标记5个点测量身管指向。  相似文献   
20.
针对单站无源定位可观测性弱、观测噪声大而导致的定位精度低、稳定性差和收敛速度慢等问题,在结合平方根无迹卡尔曼滤波(Square-Root Unscented Kalman Filter,SRUKF)以及后向平滑思想的基础上,提出了一种改进SRUKF的双向滤波算法。该算法采用Q-R分解的形式,使用误差协方差的平方根代替协方差参与递推运算,提高了算法的稳定性与运算效率。同时,该算法对状态向量进行扩维,将过程噪声与观测噪声通过非线性系统传播,降低了噪声对滤波精度的影响,并利用当前时刻滤波结果通过Rauch-Tung-Striebel(RTS)后向平滑得到再次前向滤波更高精度的起始值,提高了算法的定位精度与收敛速度。仿真结果表明,新算法在保证实时性的基础上改善了单站无源定位的性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号